The Use of Formal Methods for Safety-Critical Systems

Ph.D. Thesis, 1997
Paul Trafford

Addenda et Corrigenda

This document provides a proof that the unified tester is a tester for the reguwetoter in

the given context. Itis to be read in conjunction with the Ph.D. thesis. You may send enquiries
by email (to: pt@easynet.co.uk)

The proof requires first of all a modification in Lemma 5.6.6:

LEMMA 5.6.6 LetS,|eBehyoc. SupposereTr(l||T(S)). Then Y1' e Belproc, VT’ € Behproc:
T #stop. ((I ||T(S)% I'|[T") Oout(T") N Zyse U {successt) O T (0) ﬁT'

Proof The proof is as given up to the instantiation in the algorithm. Then it should
continue as:

“We now consider all the wayBT(S) reached'||T’ afterc’ to deduce the result. This
amounts to showing that extendinTx by <x> always gives the desired result. Through the

definition of ||,| cannot do any action unilaterally, pmust perfornx.

Suppose the tester performs the action from the first summand. Then #fietester

can perfornf ai | . This contradicts the hypothesis.

Suppose the tester perforsigccess from the fourth term. Then

((1IT(S) & ['||T") such thal” = st op which contradicts the hypothesis.

The two middle terms (2and & summands) remain to be considered. Clearly, when

Tk performsx from Iy to getT’ it will satisfy either/{o)=T" or I (0) L [

PROPOSITION 5.6.7

Let Sbe a finite specification arldbe a non-divergent specification. THetleq S if and only

if I must T(S)
Pr oof

(=>) Sincel is non-divergent an@i(S)is finite, then owing to the definition of ||, all
computation&omp(l, T(S)are finite, sd||T(S) eventually reaches stop. Thus it suffices to

show that every termination must be a successful computation.

Ph.D. Thesis addenda: Proof of Unified Tester Paul Trafford

First we note that by construction, a successful computation must terminate in the

fourth term having performed just on ‘success’ action.
Supposel ||T(S) el T 1| T" 5 Two cases arise:
1. Tr(l||T(S)) e L*
We have ai | ¢ out(T’) since otherwisd '||T' [J f . . so by Lemma 5.6.6,

(o) ﬁ T', where there are twaubcases fof’:

() ITo)=T". Hence, by Lemma 5.6.dut(T")=L. Thus for deadlock to occur we
require out(I)=&. This impliesR (0)=AL) and hencé(c)=«. Thereforel’, and

havel'||T", can perfornsuccess. This is a contradiction.

(i) ITo)=T’. From the definition of the algorithm, we deddcéo) 0 — T' where

for someAcAs(o), we haveT'= Za; N(c"<a>). Butfrom the proposition

alJ

hypothesis we deduce immediately from Lemma 5.5.1 and Lemma 5.6.2 that

A(0)2AL0). Thereforel ' If — which is a contradiction.

Therefore case (1.) is not possible.

2. Tr(I]|T(S))eL*

By construction this can only occur when a single flag action has occurred just before
a stop action. There are just two choice$ aal from the first summand of sonde

expression or auccess from the last term.

Suppose that the termination is from the first summand. Then

o=0"<Db;f ai | >wherec Tr(l) (since within ||| andT participate in every action
beforef ai |). Now sinced ai | gout(T’), from Lemma 5.6.6, we havel (o) ﬁT'.

Therefore the first term is specifically 6to’). Thereforébg out, (S)which implies
beout, (1) since otherwis§|T always deadlocks after. Henceo”~ Tr(l). But

o" £Tr(S)and so the proposition hypothesis is contradicted.

Thus only a successful computation is possible.

Ph.D. Thesis addenda: Proof of Unified Tester Paul Trafford
(<=) It suffices to show theontrapositive, i.e.
Oo OL*.R(0) U Rs(o) O v(I[|T(S)) # pass

Proof Suppose that the LHS holds. Th#teR (0):ReRs(0). LetA=R. Then from the
definition of acceptance sets it follows thatAs(0):AeA (o). This impliesZA’ Ag(0):A’ ¢
A(o) (consequence of Lemma 5.6.2). Therefore, by Lemma 315e2Behyc:

HIT(S) ol T:0alAl! i . This gives rise to deadlock in the third term, i.e. to a failed

computation

